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Institutional Context

Full-time Equivalent Positions
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Institutional Context

Total Returns Filed, Calendar Year 2017, and Percentage Returns Examined, Fiscal Year 2018
Examined, Fiscal Year 2018 1.0M

0.8M Correspondence
Returns examined audit
0.5%
0.6M
Total:
196M
0.4M
Field
0.2M audit

SOURCE: 2018 IRS Data Book Table 9a
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Stylized Program

Audit returns
Identify returns
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Stylized Program

Audit returns
Identify returns
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Tax Gap Estimate



Sequential Decision-Making (Machine Learning)
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Sequential Decision-Making In the Real World

Example: NETFLIX
| Agent ||
state reward action
SR A,
R (
< Environment ]4—
Context User information on device (environment)
Actions Set of movie banners to show
Reward User engagement (click-through, minutes)
Learner |dentify policy to maximize cumulative reward

Explore new movies / preferences vs. Exploit known preferences



Sequential Decision-Making In the Real World
Example: ¥ [RS

Identify returns

> Agent |

V\—J E 4 A\ Departmentofthe
state [ | reward — 51040 U'sindivi
S R R, A, Label ]

::SM Environment ]<— iiin;;ioTZ ’é
Context Tax return information (taxpayer, stratum, etc.)
Actions Selecting returns to audit
Reward Detected Under-reporting
Learner |dentify policy to maximize cumulative reward

Explore forms of underreporting vs. Exploit known underreporting



Sequential Decision-Making In the Real World
Example: ¥ [RS

Identify returns

> Agent ||

L E A4\ A f Departmentof the
state [ | reward — 51040 U'sindivi
S| & R, 4 Label [

::SM Environment ]<— iiiiﬂ;;{;ﬂ"; 'é
Context Tax return information (taxpayer, stratum, etc.)
Actions Selecting returns to audit
Reward Under-reporting
Learner |dentify policy to maximize cumulative reward

+ Estimate unbiased population statistics (e.g., tax gap, average
misreporting)



Sequential Decision-Making In the Real World
Example: ¥ [RS

Identify returns

>| Agent ||
g Department of the
state reward action & 1040 U.S. Indivi
Sl | R A, Label
< Rz+1 ( . See ) k
s., | Environment |e——— xR |E
\.

Secondary objective
not typical of machine

learning literature \‘

+ Estimate unbiased population statistics (e.g., tax gap, average
misreporting)




Sequential Decision-Making In the Real World

Example: ¥ [RS

Tempting Solution: Use a regression-based risk-model to do selection and estimation, with no

random sampling.

Problems: Sequentially-learned models are known to be biased and there are no theoretically
guaranteed ways to remove this bias in the low sample regime (yet). (Nie et al., 2018)

bad projection J
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good projection: separates classes well

Risk model

Lack of exploration leads to suboptimal feedback loops. (Jiang et al., 2019)




Optimize-and-Estimate Structured Bandits

+ Sampling Literature |
' (unbiased estimation of
| population statistics) i

Machine Learning Literature
on Sequential Decision-Making
 (e.g., bandit algorithms that !

. optimize for reward only) i



Adaptive Bin Sampling
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Adaptive Bin Sampling

Greedy selection

1.0 i ¢ e.g., stylized version of Op audits
e Risk Dist i . (e85 paudits)
| ---- Greedy cutoff | o If only use this:
0.5 | .° biased model, biased estimate
oo
PP X X A .:
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Adaptive Bin Sampling

1.0+
° Risk Dist

05! T Greedy cutoft

0.01'0000000?00000000

Random selection
If only use this:

Unbiased estimate,
but sub-optimal and low reward



Adaptive Bin Sampling
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Adaptive Bin Sampling
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Adaptive Bin Sampling

Horvitz-Thompson estimator gives unbiased estimate.

And we have fine-grained control over reward-variance trade-off.




Experiments

For NRP data years 2006-2014
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Experiments

For NRP data years 2006-2014

=

Take 80% subsample

2. Give selection policy ~500 covariates from
tax return data for each “arm” (tax return) in
the sample
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Experiments

For NRP data years 2006-2014

=

Take 80% subsample

2. Give selection policy ~500 covariates from
tax return data for each “arm” (tax return) in
the sample

3. Selection policy returns arms to audit

Full NRP Sample

i 80% subsample of yeart :

Env

Policy

Year incremented

N arms offered

K arms selected

A

1-year Gap

Rewards Returned
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Experiments

For NRP data years 2006-2014

=

Take 80% subsample

2. Give selection policy ~500 covariates from
tax return data for each “arm” (tax return) in
the sample

Selection policy returns arms to audit
Simulate a 1 year gap
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For NRP data years 2006-2014
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Experiments

For NRP data years 2006-2014

=

ko

Take 80% subsample

Give selection policy ~500 covariates from
tax return data for each “arm” (tax return) in
the sample

Selection policy returns arms to audit
Simulate a 1 year gap

Return the tax adjustment (reward) after
that gap

Policy makes population estimate

Full NRP Sample

Env
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-

Policy
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K arms selected
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Experiments

Best Reward Settings
Policy R UPE  OPE  INR
ABS-1 $41.5M* 04 / 31.0 37.6%
) e-only $41.3M* 43/ 37.4 38.3%
Unbiased Methods s po 5 ga05M* 06/ 245  38.3%
Random $12.7M 1.5V 14.7 53.1%




Experiments

10% (g) random sample,

rest greedy

\ Best Reward Settings

\ Policy R KPE  OPE  MNR
ABS-1 $41.5M° 04, 310 37.6%
. conly $413M* 43/ 374 383%
Unbiased Methods 5o 5 ga05M* 06/ 245  383%
Random $127M 15/ 147  53.1%




Experiments

Best Reward Settings
Policy R UPE  OPE  INR
ABS-1 $41.5M* 04/ 31.0 37.6%
) e-only $41.3M* 43/ 37.4 38.3%
Unbiased Methods s po 5 ga05M* 06/ 245  38.3%
Random ‘\$12.7M 1.5V 14.7 53.1%

Fully random sample every year,
rest greedy



Experiments

ABS canyield lower variance, similar
reward, lower no-change rate, and
retain unbiasedness

Best Reward Settings

Policy R KLPE OPE /ﬁR

ABS-1 $41.5M* 04. 310 37.6%

. conly $413M* 43/ 374 383%
Unbiased Methods 5o 5 ga05M* 06/ 245  383%
Random $127M 15/ 147  53.1%




Experiments

Greedy tends to perform well in highly stochastic low-sample regime (which matches
our experimental setup). (Bastani et al., 2022 proved this recently.)

Best Reward Settings
\ Policy R KPE  OPE  INR

Greedy $43.6M° 164X 88  365%
. UCB-1 $424M* 153X 94  38.6%
Biased Methods  _Grocqy  $413M* 61X 175  383%

UCB-2 $40.7M* 156X 10.21 40.7%



Experiments

Best Reward Settings
Policy R KLPE OPE  MNR
Greedy $43.6M* 164X 8.8 36.5%
. UCB-1 $424M* 153X 94 38.6%
Biased Methods  _Grocqy  $413M* 61X 175  383%
UCB-2 $40.7M* 156X 10.21 40.7%

Use regression model for both selection
and population estimate. Means biased
prediction, but slightly more reward and
lower variance



Experiments

Best Reward Settings
Policy R UPE  OPE WNR
Greedy $43.6M* 164X 838 36.5%
. UCB-1 $424M* 153X 94 38.6%
Biased Methods  _Grocqy  $413M* 61X 175  383%
UCB-2 $40.7M* 156X

1021  40.7% \

Even some randomness,
reduces bias of model-based estimate,
but not guaranteed.



Experiments

Best Reward Settings
Policy R WPE OPE UNR

ABS-1 $415M* 04, 310 37.6%
. conly $41.3M* 43/ 374  383%
Unbiased Methods 5o 5 ga05M* 06/ 245  383%
Random $12.7M 1.5/ 147  53.1%
Greedy $43.6M° 164X 88  365%
. UCB-1 $424M* 153X 94  38.6%
Biased Methods  _Grocqy  $413M* 61X 175  383%
UCB-2  $40.7M* 156X 1021 40.7%



ABS Enables Formal Tradeoff Between Precision and Reward
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Population Estimate
Standard Deviation

600 -

400

200 1

e 2ok
Pg— .*uﬂ“’M

20 25 30 35 4.0
Cumulative Reward ($) le7

ABS Enables Formal Tradeoff Between Precision and Reward

0.48

0.46

nge Rate

042 &

o Ch

0.40=

0.38



More optimal methods sample higher incomes
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EITC TPI C/F E/2016 Farm
Y <$200K <$25K N N
Y <$200K >$25K N N
N <$200K N N N
N <$200K N Y N
N <$200K <$25K N N
N <$200K $25K-100K N N
N <$200K $100K-200K N N
N <$200K >$200K N N
N <$200K N N Y
N $200K-$1M N N N
N $200K-$1M Y N N
N >$IM N N N

EITC, TPI<$200k, Sch C/F<$25K
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., Sch C/F <$25k

, Sch C/F $25k-100k
, Sch C/F $100k-200k
. Sch C/F >$200k

TPI $200k-$1M, No Sch C/F
TPI $200k-$1M, Sch C/F

TPI>$1M



But heteroskedasticity can also drive sampling higher incomes

EITC TPI C/F E/2016 Farm
2000 1 ol @ Y <$200K  <$25K N N
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® N 200K N Y N
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@® N <$200K  SI00K-200K N N
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L) @ N $200K-$1IM N N N
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N >$IM N N N

UCB (Z=10)



Takeaways

1. Unbiased estimation of population (e.g., average misreporting) can still yield returns almost as high as
greedy selection, with careful sampling and HT estimation.
a. Suggests that a unified optimize-and-estimate program could be better and be more efficiently
optimized.
2. Model-based population mechanisms are not guaranteed to be unbiased, but bias in practice can be
reduced with some randomness.
More optimal methods tend to sample higher incomes in our experiments.
But heteroskedasticity also drives sampling of higher-incomes in uncertainty-based methods.
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