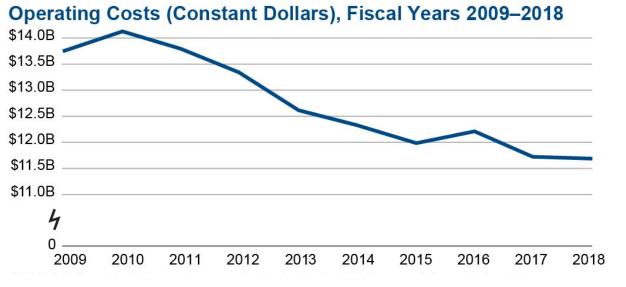
Integrating Reward Maximization and Population Estimation

Sequential Decision-Making for Internal Revenue Service Audit Selection

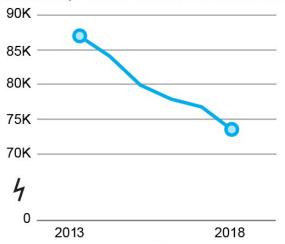
Peter Henderson¹, Ben Chugg¹, Brandon Anderson¹², Kristen Altenburger¹, Alex Turk², John Guyton², Jacob Goldin¹, Daniel E. Ho¹ ¹Stanford University ²IRS RAAS

All views and opinions expressed in this presentation are our own and not of any of our co-authors, nor of the Internal Revenue Service or any other company or government entity.

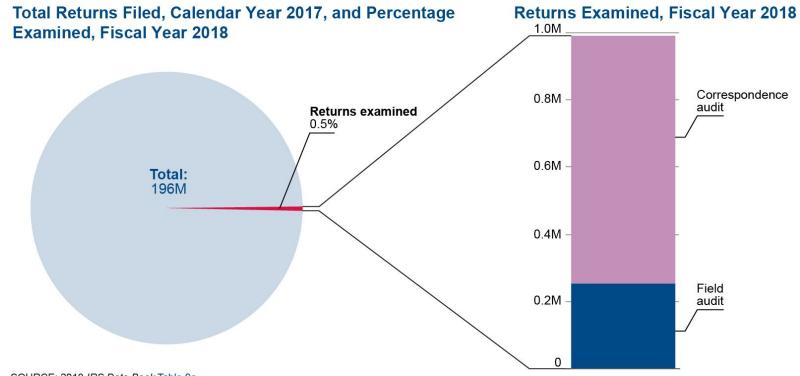
Institutional Context



Full-time Equivalent Positions Realized, Fiscal Years 2013–2018



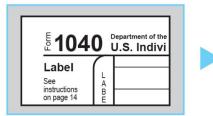
Institutional Context



SOURCE: 2018 IRS Data Book Table 9a

Stanford

Identify returns



Random sample (~15k / year, 2006-14)

Stylized Program

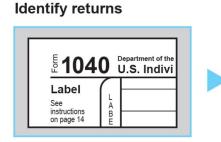
Identify returns

bad projection

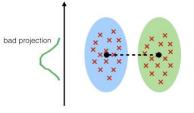
Random sample (~15k / year, 2006-14)

Risk model

Stylized Program



Random sample (~15k / year, 2006-14)



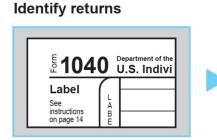
good projection: separates classes well

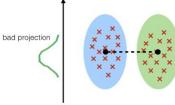
```
Risk model
```

Audit returns

Risk selected Op Audits (>500k / year)

Stylized Program





```
Risk model
```

Audit returns

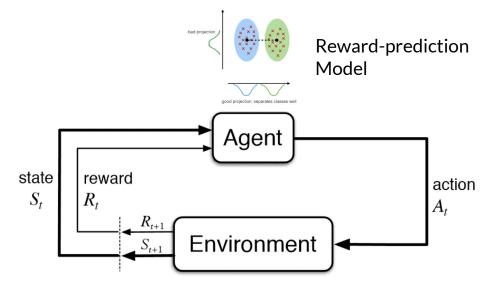
Risk selected Op Audits (>500k / year)

Tax Gap Estimate

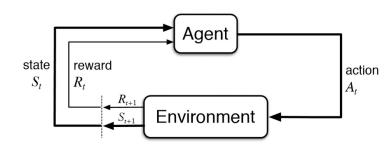
Random sample

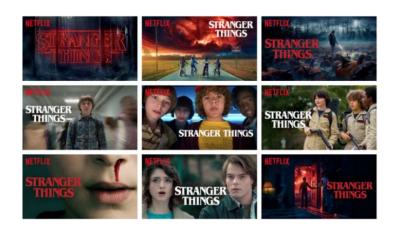
(~15k / year, 2006-14)

Sequential Decision-Making (Machine Learning)



Example: **NETFLIX**

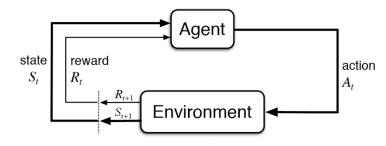




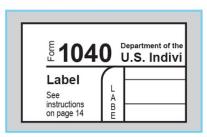
ContextUser information on device (environment)ActionsSet of movie banners to showRewardUser engagement (click-through, minutes)LearnerIdentify policy to maximize cumulative reward

Explore new movies / preferences vs. Exploit known preferences

Example: IRS



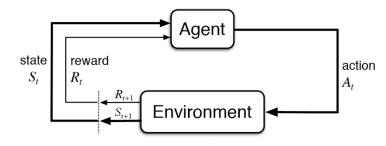
Identify returns



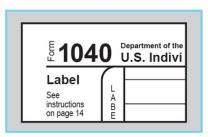
- Context Tax return information (taxpayer, stratum, etc.)
- Actions Selecting returns to audit
- Reward Detected Under-reporting
- Learner Identify policy to maximize cumulative reward

Explore forms of underreporting vs. Exploit known underreporting

Example: IRS



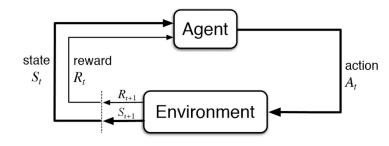
Identify returns



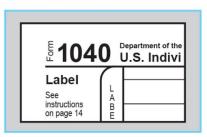
- Context Tax return information (taxpayer, stratum, etc.)
- Actions Selecting returns to audit
- Reward Under-reporting
- Learner Identify policy to maximize cumulative reward

+ Estimate unbiased population statistics (e.g., tax gap, average misreporting)

Example: IRS



Identify returns



Secondary objective not typical of machine learning literature

+ Estimate **unbiased** population statistics (e.g., tax gap, average misreporting)

Example:

bad projection good projection: separates classes well Risk model

Tempting Solution: Use a regression-based risk-model to do selection and estimation, with no random sampling.

Problems: Sequentially-learned models are known to be biased and there are no <u>theoretically</u> <u>guaranteed</u> ways to *remove* this bias in the low sample regime (yet). (Nie et al., 2018) Lack of exploration leads to suboptimal feedback loops. (Jiang et al., 2019)

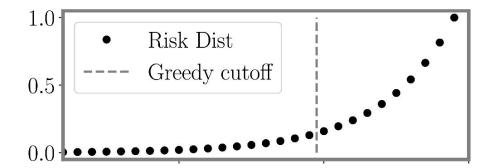
Optimize-and-Estimate Structured Bandits

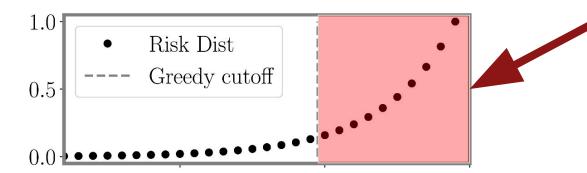
Machine Learning Literature on Sequential Decision-Making (e.g., bandit algorithms that optimize for reward only)

+ Sampling Literature (unbiased estimation of population statistics)

=

Optimize-and-estimate Structured Bandits





Greedy selection (e.g., stylized version of Op audits)

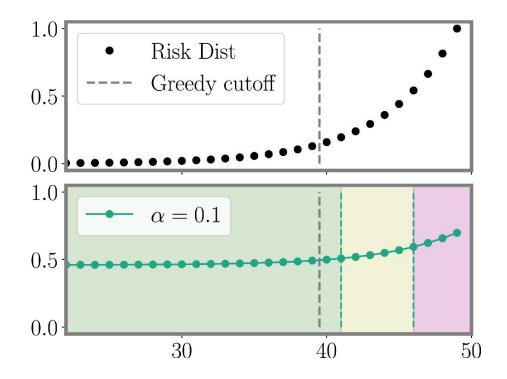
If only use this: biased model, biased estimate

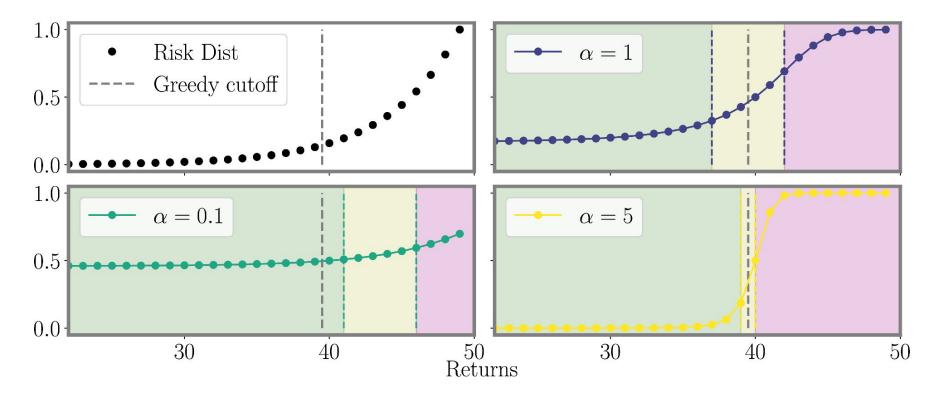


Random selection

If only use this:

Unbiased estimate, but sub-optimal and low reward





Stanford

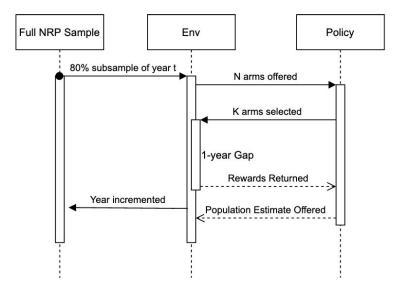
Horvitz-Thompson estimator gives **unbiased** estimate.

And we have fine-grained control over reward-variance trade-off.

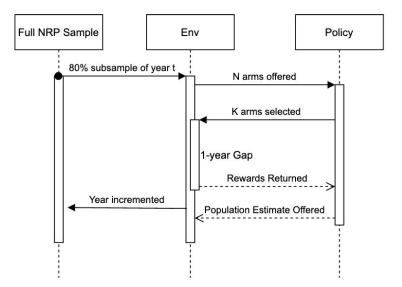
$$\hat{\mu}_{HT}(t) = \frac{1}{\sum_{a} w_a} \sum_{a \in \mathcal{K}} \frac{w_a r_a}{p_a},$$

For NRP data years 2006-2014

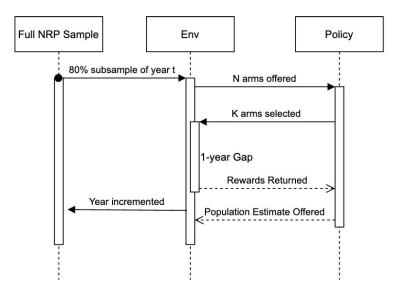
1. Take 80% subsample



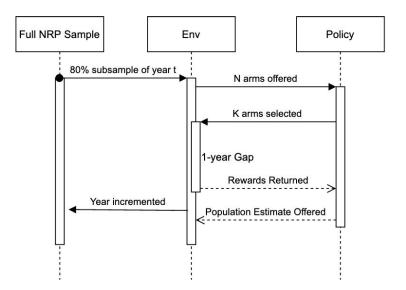
- 1. Take 80% subsample
- 2. Give selection policy ~500 covariates from tax return data for each "arm" (tax return) in the sample



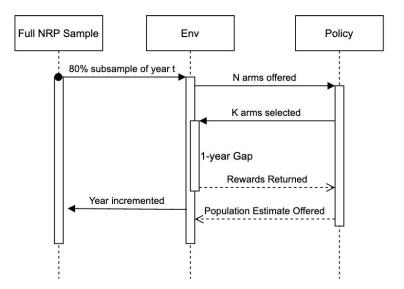
- 1. Take 80% subsample
- 2. Give selection policy ~500 covariates from tax return data for each "arm" (tax return) in the sample
- 3. Selection policy returns arms to audit



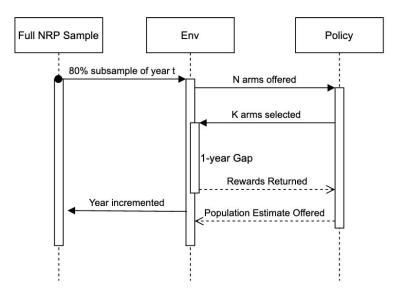
- 1. Take 80% subsample
- 2. Give selection policy ~500 covariates from tax return data for each "arm" (tax return) in the sample
- 3. Selection policy returns arms to audit
- 4. Simulate a 1 year gap



- 1. Take 80% subsample
- 2. Give selection policy ~500 covariates from tax return data for each "arm" (tax return) in the sample
- 3. Selection policy returns arms to audit
- 4. Simulate a 1 year gap
- 5. Return the tax adjustment (reward) after that gap



- 1. Take 80% subsample
- 2. Give selection policy ~500 covariates from tax return data for each "arm" (tax return) in the sample
- 3. Selection policy returns arms to audit
- 4. Simulate a 1 year gap
- 5. Return the tax adjustment (reward) after that gap
- 6. Policy makes population estimate



	Best Re	Best Reward Settings					
	Policy	R	μ_{PE}	σ_{PE}	μ_{NR}		
	ABS-1	\$41.5M*	0.4 🗸	31.0	37.6%		
Inchinged Matheda	ϵ -only	\$41.3M*	4.3	37.4	38.3%		
Unbiased Methods	ABS-2	\$40.5M*	0.6	24.5	38.3%		
	Random	\$12.7M	1.5	14.7	53.1%		

10% (ε) random sample, rest greedy

Best Reward Settings								
	Policy	R	μ_{PE}	σ_{PE}	μ_{NR}			
	ABS-1	\$41.5M*	0.4 🗸	31.0	37.6%			
The big and Matheda	ϵ -only	\$41.3M*	4.3	37.4	38.3%			
Unbiased Methods	ABS-2	\$40.5M*	0.6	24.5	38.3%			
	Random	\$12.7M	1.5	14.7	53.1%			

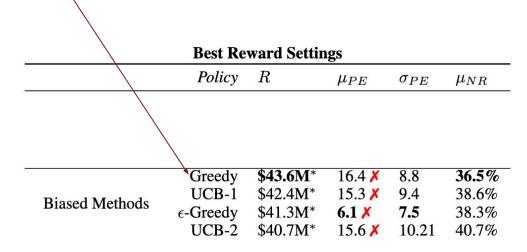
	Policy	R	μ_{PE}	σ_{PE}	μ_{NR}
Unbiased Methods	ABS-1	\$41.5M*	0.4 🗸	31.0	37.6%
	ϵ -only	\$41.3M*	4.3	37.4	38.3%
	ABS-2	\$40.5M*	0.6	24.5	38.3%
	Random	\$12.7M	1.5	14.7	53.1%

Fully random sample every year, rest greedy

ABS can yield lower variance, similar reward, lower no-change rate, and retain unbiasedness

	Best Re	ward Settin	igs		
	Policy	R	μ_{PE}	σ_{PE}	μ_{NR}
Unbiased Methods	ABS-1	\$41.5M*	0.4 🗸	31.0	37.6%
	ϵ -only	\$41.3M*	4.3	37.4	38.3%
	ABS-2	\$40.5M*	0.6	24.5	38.3%
	Random	\$12.7M	1.5	14.7	53.1%

Greedy tends to perform well in highly stochastic low-sample regime (which matches our experimental setup). (Bastani et al., 2022 proved this recently.)



Best Reward Settings							
	Policy	R	μ_{PE}	σ_{PE}	μ_{NR}		

12 <u></u>	Greedy	\$43.6M*	16.4 🗡	8.8	36.5%
Discod Mathada	UCB-1	\$42.4M*	15.3 🗡	9.4	38.6%
Biased Methods	ϵ -Greedy	\$41.3M*	6.1 🗡	7.5	38.3%
	UCB-2	\$40.7M*	15.6 🗡	10.21	40.7%

Use regression model for both selection and population estimate. Means biased prediction, but slightly more reward and lower variance

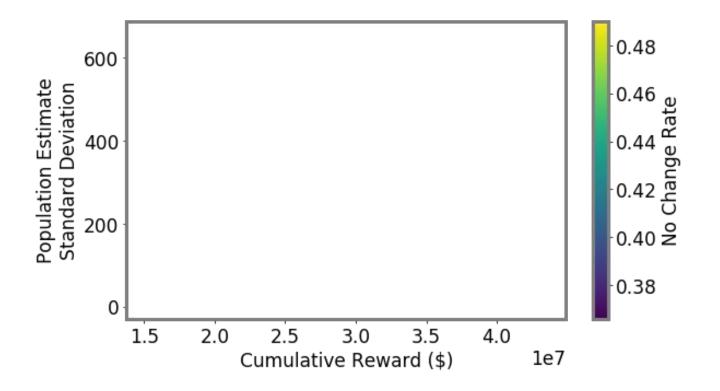
Best Reward Settings							
	Policy	R	μ_{PE}	σ_{PE}	μ_{NR}		

	Greedy	\$43.6M*	16.4 🗡	8.8	36.5%
Dissed Matheda	UCB-1	\$42.4M*	15.3 🗡	9.4	38.6%
Biased Methods	ϵ -Greedy	\$41.3M*	6.1 X	7.5	38.3%
	UCB-2	\$40.7M*	15.6 🗡		40.7%

Even some randomness, reduces bias of model-based estimate, but not guaranteed.

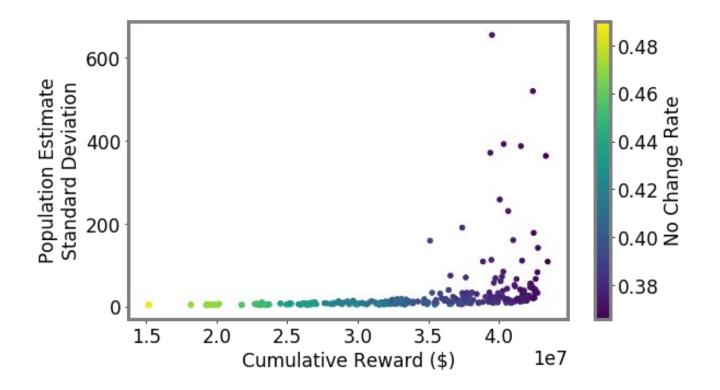
Best Reward Settings					
	Policy	R	μ_{PE}	σ_{PE}	μ_{NR}
Unbiased Methods	ABS-1	\$41.5M*	0.4 🗸	31.0	37.6%
	ϵ -only	\$41.3M*	4.3	37.4	38.3%
	ABS-2	\$40.5M*	0.6	24.5	38.3%
	Random	\$12.7M	1.5	14.7	53.1%
	Greedy	\$43.6M*	16.4 🗡	8.8	36.5%
Biased Methods	UCB-1	\$42.4M*	15.3 🗡	9.4	38.6%
	ϵ -Greedy	\$41.3M*	6.1 X	7.5	38.3%
	UCB-2	\$40.7M*	15.6 🗡	10.21	40.7%

ABS Enables Formal Tradeoff Between Precision and Reward



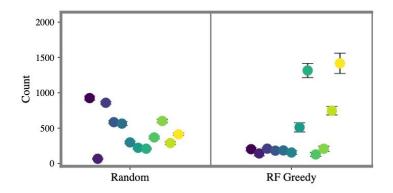
Stanford

ABS Enables Formal Tradeoff Between Precision and Reward

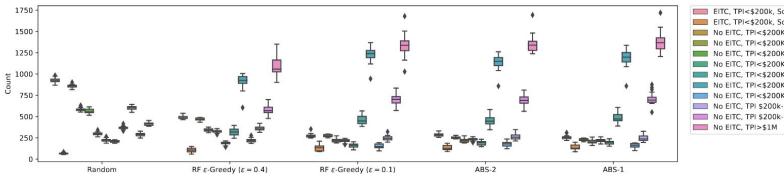


Stanford

More optimal methods sample higher incomes

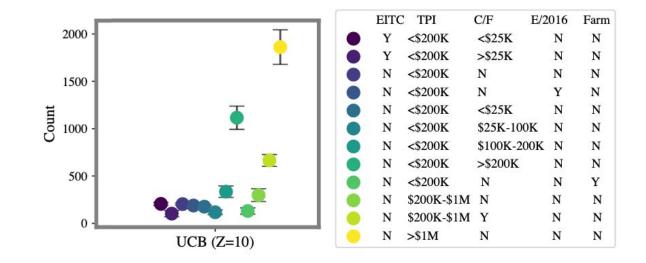


	EITC	TPI	C/F I	E/2016	Farm
	Y	<\$200K	<\$25K	N	Ν
	Y	<\$200K	>\$25K	Ν	Ν
•	Ν	<\$200K	Ν	Ν	Ν
•	Ν	<\$200K	Ν	Y	Ν
•	Ν	<\$200K	<\$25K	N	Ν
•	Ν	<\$200K	\$25K-100k	K N	Ν
•	Ν	<\$200K	\$100K-200	KN	Ν
•	Ν	<\$200K	>\$200K	N	N
	Ν	<\$200K	Ν	Ν	Y
•	Ν	\$200K-\$1M	Ν	Ν	Ν
•	Ν	\$200K-\$1M	Y	Ν	Ν
	Ν	>\$1M	Ν	N	Ν





But heteroskedasticity can also drive sampling higher incomes



Takeaways

- 1. Unbiased estimation of population (e.g., average misreporting) can still yield returns almost as high as greedy selection, with careful sampling and HT estimation.
 - a. Suggests that a **unified optimize-and-estimate program** could be better and be more efficiently optimized.
- 2. Model-based population mechanisms are not guaranteed to be unbiased, but bias in practice can be reduced with some randomness.
- 3. More optimal methods tend to sample higher incomes in our experiments.
- 4. But heteroskedasticity also drives sampling of higher-incomes in uncertainty-based methods.

