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Chatbots, virtual personal assistants, natural languageinterfaces for various systems.
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These components are learned from datasets or end-to-endfrom actual conversations.
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▶ Dialogue systems are convenient interfaces and arebecoming increasingly prevalent in society.
▶ Applications contexts include automation in healthcare,in-the-home assistive devices, hands-free interaction inautomobiles, and more.
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Adversarial example, using VHRED model from (Serban et al.,2017) with an intentional single-character edit.

Character-Level Edit Adversarial ExampleCONTEXT: Inside Out is really funnyRESPONSE: i could not stop laughing during the firstone. I honestly found it to be hilarious.CONTEXT: Insde Out is really funnyRESPONSE: i didn’t really find it funny. it just sur-prised me. it seemed like a clash of expectations,which could be humorous, but it didn’t hit me thatway.
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We outline several main aspects:
▶ Bias
▶ Privacy
▶ Adversarial Examples
▶ Safety
▶ Special Considerations for Reinforcement Learning
▶ Reproducibility
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▶ Bias can be defined as prejudice for or against a person,group, idea, or thing particularly expressed in an unfair way.
▶ Rule-based dialogue systems: Bias introduced by the ruledesigner
▶ Data-driven dialogue systems: Bias introduced by thedata, including choice of dataset, collection procedure
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Commonly used datasets for training end-to-end dialoguemodels in the literature contain bias and the state of the artmodels learn it!

Dataset Bias Hate Speech Offensive LanguageTwitter 0.155 (± 0.380) 31,122 (0.63 %) 179,075 (3.63 %)Reddit Politics 0.146 (± 0.38) 482,876 (2.38 %) 912,055 (4.50 %)Cornell Movie Dialogue Corpus 0.162 (± 0.486) 2020 (0.66 %) 6,953 (2.28 %)Ubuntu Dialogue Corpus 0.068 (± 0.323) 503∗ (0.01 %) 4,661 (0.13 %)HRED Model Beam Search (Twitter) 0.09 (± 0.48) 38 (0.01 %) 1607 (0.21 %)VHRED Model Beam Search (Twitter) 0.144 (± 0.549) 466 (0.06 %) 3010 (0.48%)HRED Model Stochastic Sampling (Twitter) 0.20 (± 0.55) 4889 (0.65 %) 30,480 (4.06 %)VHRED Model Stochastic Sampling (Twitter) 0.216 (± 0.568) 3494 (0.47%) 26,981 (3.60 %)
Table: Bias using Hutto et al., 2015. bias model. Hate speech andoffensive content classified via Davidson et al., 2017.
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VARIABLE

Reddit Dataset:
▶ Max Bias (3.93) : "fresh off apology nugent comparesobama administration to nazis"
▶ Min Bias (-1.44): "american hostage <...> held by isisconfirmed dead nbcnews."

Movie Dataset:
▶ Max Bias (8.31) : "him. him..."
▶ Min Bias (-3.45): "no. pray. we never find out."
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(BOLUKBASI ET AL. 2016)

We examine if a language model trained with debiased wordembeddings still contains the same sorts of biases (it does).
Word2vec DebiasedDistribution Male Female Male FemaleMale Stereotypes 0.7545 0.2454 0.7437 0.2562Female Stereotypes 0.7151 0.2848 0.6959 0.3040



Title Introduction What 12 of 23BIAS IN DIALOGUE SYSTEMS

▶ Need better ways to detect biases in natural language,account for contextual information (may require reasoning)
▶ Can try to prune datasets, but difficult at large scalewithout better bias detection mechanisms.
▶ Need more methods of preventing generative models fromexhibiting natural language biases even if underlying datacontains it
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Goal : Avoid unintended harmful consequences from dialoguesystems
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Aim to provide:
▶ Performance guarantees: stability and predictability ofoutput.
▶ Proper objective specification: adapt to preferences andtolerability.
▶ Model interpretability: Understand behavior in case whereit deviates from objective.
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Safety critical settings:
▶ Medical domains (incl. mental illness): diagnostic andintervention
▶ Transportation (e.g. can’t distract the driver)
▶ Contextual awareness for any chat agent (e.g. if dialoguesystem realistic, may have subtle effects on mental health)
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Reproducibility refers to the ability of a researcher toduplicate the results of a prior study using the samematerials as were used by the original investigator. (...)Reproducibility is a minimum necessary condition for afinding to be believable and informative.
K. Bollen, J. T. Cacioppo, R. Kaplan, J. Krosnick, J. L. Olds, Social,Behavioral, and Economic Sciences Perspectives on Robust andReliable Science, National Science Foundation, 2015.
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Thank you!
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If an adversary can augment you input signal to direct theagent’s output, compromise:
▶ Safety
▶ Performance
▶ Neutrality (freedom from biases)
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Adversarial examples in text?
▶ Adding distracting sentences to paragraph (Jia and Liang2017)
▶ Misspelled words (remove/replace/insert characters).
▶ Paraphrased sentences (similar meaning, different words).
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Use VHRED model from Serbal et al., 2017, causing intentionalsingle-character edit.

Character-Level Edit Adversarial ExampleCONTEXT: Inside Out is really funnyRESPONSE: i could not stop laughing during the firstone. I honestly found it to be hilarious.CONTEXT: Insde Out is really funnyRESPONSE: i didn’t really find it funny. it just sur-prised me. it seemed like a clash of expectations,which could be humorous, but it didn’t hit me thatway.
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Information leakage:
▶ Device in “listening”mode, records side conversation withprivate information
▶ Information uploaded to train shared model.

Simple experiment:
▶ Introduce 10 private input-output keypairs in data.
▶ Train simple seq2seq language model.
▶ When seeing on the input, does the model generate thematching output (and vice versa)?
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Types of keypairs:

▶ unique keypairs that do not exist in any vocabulary (UUID)
▶ words from the English natural language vocabulary (NL)
▶ words sub-sampled from the 10k dialogue pairs.
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▶ During live exploration, need guarantees not to enterdangerous state spaces
▶ Need performance and stability guarantees
▶ However! Evaluating dialogue is hard, how can you placeguarantees on performance if your reward is variable?
▶ Need to improve automated methods for detection andevaluation of dialogues, biases, etc.
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