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lteration #1

Method PFLOPS-day | Energy (kWh) | GCPWCC | EPAWCC ACC
0.20 116 88 212 132
0.34 200 152 165 103
Processor GFLOPS W GFLOPS/W Release Date 0.77 499 380 911 568
NVIDIA V100 PCle / SXM2 (NVIDIA, 2018) 14000 / 15700 | 250 / 300 56 / 52 June 21, 2017 L7 1368.6 1131 1043 706
NVIDIA V100 PCle / SXM2 (Tensor) (NVIDIA, 2018) 112000 / 125000 | 250 / 300 | 448 / 417 June 21, 2017 3.25 2860 2179 5213 3251
NVIDIA GTX 1080 (NVIDIA. 2016a) / 1080Ti (NVIDIA. 2017) | 8873 / 10609 | 180 / 250 19 /45 | May 27. 2016 / March 10, 2017 4.00 5265 4012 9597 5084
NVIDIA Titan X (NVIDIA, 2016b) 10790 250 11 August 2. 2016 7.95 5128 3007 0346 5828
AR X esla W arris, = ] i ol & A aNovember . &L ¢ a7 . S 290N
NVIDIA GTX 980 (NVIDIA. 2016a) 1981 165 30 September 18, 2014 30. f‘:""m’ 19(»13 2}'?'_“’ _l'fo"
NVIDIA Tesla K80 (NVIDIA, 2015) 8736 300 29.12 November 17, 2014 85.93 995440 42245 45834 28580
NVIDIA Tesla K40 1290 235 18.25 October 8. 2013 118.27 50688 38624 41905 26130
Google TPU (Tensor) (Jouppi et al.. 2017a) 92000 7 1227 2015 190 122580 03406 101342 63192
Production NMT Service Rough Estimated Daily Compute 1.9 % 10° 3.6 x 10 3.1 x 10° 2.8 x 10" | 1.9 x 10°
Yor (Canita Por Daraam PR Y ] _ - _ _ _
Table 1: GFLOPS/W of some processors in terms of single precision performance unless l’('lx‘(;li(x'i‘lll‘!):sl‘(llgx:lliri\‘l;:ll:li‘ul(l()il'u;’::()'rll{(;(;;]iu)) ] 3;,');0 ] ] ]

denoted by (Tensor) in which case tensor acceleration is considered. In this case the
operations are reported in terms of GOPS (Giga-Operations Per Second) since this
would involve quantization for processing. We assume going forward all numbers
in terms of FLOPS and that this is roughly equivalent to the amount of single-
precision floating point operations needed on other hardware. Though models may
change slightly for quantization changing total operations, we do not account for
this. In most cases GFLOPS/W not explicitly stated, so were estimated by using

Table 2: WCC is the Worst-Case Carbon Dioxide Emissions in kg of CO2 in US Grid
regions. That is the data-center regions with the worst ratio of emission-
heavy to clean energy consumption. We denote GCPWCC and EPAWCC for
the worst case region according to Google Cloud data and EPA data, respec-
tively. ACC is the average case carbon emissions and is calculated accord-
ing to the US average of CO2 emissions per kWh. Puerto Rico data from:

GFLOPS over Thermal Design Power (TDP), denoted by W for wattage here.
While the Google TPU specifications may differ by version, we were only able to
reliably confirm those in Jouppi et al. (2017a).

https://www.eia.gov/tools/faqs/faq.php?id=97&t=3. Note, these numbers may
be orders of magnitude more or less, but extrapolate based on available informa-
tion using similar methods to Amodei and Hernandez (2018). In particular, the
daily translation model makes many assumptions and is geared toward providing
a rough estimate as described in the Appendix. We also only evaluate energy
usage as calculated from the GPU, ignoring the possibly significant added energy
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lteration #2

Can we estimate conference-wide distribution of compute to mask author names?

File Edit View Insert Formal

B2017 gpuusage & & ©

Data Tools Add-ons

Help

& v -
Title
A B c
Title Gpu type Pflops gpu hours

Tesla K80 0.005591
titan x
p100
k40m 0.004291

no info

no info

1080ti

titan x

no info

no info

maybe

maybe

maybe

not enough info

not enough info (dont think they used gpus)

massive experiment not easy to decipher

TITAN X

k80 0.005591
not enough info

not enough info

pascal titan x 0.01079
not enough info

not enough info

not enough info
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Note iteratiol
18.64

18.25 7 days total

18.64 Note: read off from figure 4 in |

41 3-5 hours per method, 5 methe
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teration #3: How can we estimate energy more accurately?

Implemented interface to different energy meters from Intel and Nvidia,
but experiments showed crazy high variance.



teration #3: How can we estimate energy more accurately?

't turns out on Slurm, Intel’'s RAPL energy interface counts all of the
energy used for every job on the worker machine!

Almost moved forward with a bug.
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Awesome paper!



Awesome paper!

But beat us to the punch... should we even bother continuing?

Model Hardware  Power (W) Hours kWh-PUE COse Cloud compute cost
Transformery,.. P100x8 1415.78 12 27 26 $41-%140
Transformer;;,  P100x8 1515.43 84 201 192 $289-5981

ELMo P100x3 517.66 336 275 262 $433-S1472
BERT;,,.. V100x64 12,041.51 79 1507 1438 $3751-812,571
BERTq e TPUv2x16 — 96 - —  $2074-56912

NAS P100x8 1515.43 274,120 656,347 626,155 $942,973-$3,201,722
NAS TPUv2x1 — 32,623 - —  $44,055-$146,848
GPT-2 TPUv3x32 — 168 - —  $12,902-$43.008

Table 3: Estimated cost of training a model in terms of CO, emissions (Ibs) and cloud compute cost (USD).” Power
and carbon footprint are omitted for TPUs due to lack of public information on power draw for this hardware.



lteration #4: Publish lessons learned with new efficient RL models

Convolution Convolution
v v

RL models use ConvNets for Atari games,
what If we use a mobile-optimized
architecture to make them more efficient”



https://www.nature.com/articles/nature14236

But wait... our experiments showed that using mobile

architectures with less Floating Point Operations used the same
or MORE energy?!



lteration #4: Publish lessons learned with new efficient RL models

tensorflow / tensorflow @ Watch 8.3k vy Star 1

Code @ Issues 3,541 Pull requests 216 Actions Projects 1

slim.separable_conv2d is too slow #12132

Result: mobile architectures slower and
more energy hungry??



lteration #4: Publish lessons learned with new efficient RL models

Result: mobile architectures slower and
more energy hungry??

tensorflow / tensorflow ® Watch 8.3k Yy Star 1
Mo M leciiae 2 EBA1 Diill ramiiacte 21 A Antinne Draiante 1
tensorflow / models @ Watch 3k 77 Star 64
Code @ Issues 812 Pull requests 108 Actions Projects 5

Separable convolution is slow to train #/395
lauriebyrum opened this issue on Aug 6, 2019 - 4 comments



lteration #4: Publish lessons learned with new efficient RL models

Result: mobile architectures slower and
more energy hungry??

- tensorflow / tensorflow & Watch 8.3k Y7 Star 1
S Onada ) leeciiae RA1 M Diuill ramiiacte 21A () Antinne "1 Draiante 1
= tensorflow / models & Watch 3k Y7 Star 64
<> Code (@ Issues 812 Il Pull requests 108 (») Actions "l Projects 5
~ (I | I . ® B 1 . . " 11/ ™

3.3 Trap of FLOPs

FLOPs 1s widely used for comparing model complexity, and it is considered proportional to the run
time. However, a small number of FLOPs does not guarantee fast execution speed. Memory access
time can be a more dominant factor in real implementations. Because I/O devices usually access
memory in units of blocks, many densely packed values might be read faster than a few numbers
of largely distributed values. Therefore, the implementability of an efficient algorithm in terms of
both FLOPs and memory access time would be more important. Although a 1x1 convolution has
many FLOPs, this 1s a dense matrix multiplication that 1s highly optimized through general matrix
multiply (GEMM) functions. Although depthwise convolution reduces the number of parameters
and FLOPs greatly, this operation needs fragmented memory access that 1s not easy to optimize.

Constructing fast network through deconstruction of convolution.



lteration #4: Publish lessons learned with new efficient RL models

Result: mobile architectures slower and

more energy hungry??
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FLOPs 1s widely used for comparing model complexity, and it is considered proportional to the run
time However a emall nimhber af FT (Pe dowe nat onarantes fact execyution spccd_ Mcmor)' access

TABLE 1
RATIOS OF MULT-ADDS, PARAMETERS, AND TRAINING TIME OF
DIFFERENT LAYER TYPES FOR MOBILENETS ON CAFFE.

Type Mult-Adds | Parameters | Training Time
Conv 1 x 1 94.86% 74.59% 16.39%
Conv DW 3 x 3 3.06% 1.06% 82.86%
Conv 3 x 3 1.19% 0.02% 0.72%
Fully Connected 0.18% 24.33% 0.03%

Conv DW: depthwise convolution layer.

se I/O devices usually access
ad faster than a few numbers
fficient algorithm in terms of
wugh a 1x1 convolution has
mized through general matrix
s the number of parameters
1at 1s not easy to optimize.

Diagonalwise Refactorization: An EfficientTraining Method for Depthwise Convolutions

64
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GGreen Al

Another great paper!
Do we have anything left to add?

Green Al
9() - 835 /

params (M)

Roy Schwartz*¢  Jesse Dodge**®* Noah A. Smith®Y  Oren Etzioni®

Y AleaNet ResNet152 ResNext DPN107 SENet154
2012 2015 2017 2017 2018
. . Model/year
¢ Allen Institute for Al, Seattle, Washington, USA :

(a) Different models.

* Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
¥ University of Washington, Seattle, Washington, USA Figure 4: Increase in FPO results in diminishing return
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But we built useful tools and learned a lot that might be helpful for the community!
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Figure 4: We compare carbon emissions (left) and kWh (right) of our Pong PPO experiment (see Appendix E for more
details) by using different estimation methods. By only using country wide or even regional average estimates, carbon
emissions may be over or under-estimated (respectively). Similarly, by using partial information to estimate energy
usage (right, for more information about the estimation methods see Appendix E), estimates significantly differ from
when collecting all data in real time (as in our method). Clearly, without detailed accounting, it is easy to over- or
under-estimate carbon or energy emissions in a number of situations. Stars indicate level of significance: * p < .05, ** p
< .01, *** p < .001, **** p < .0001. Annotation provided via: https://github.com/webermarcolivier/statannot.
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Carbon Impact Statement

This work contributed 8.021 kg of COs., to the atmosphere and used 24.344 kWh of electricity, having a
USA-specific social cost of carbon of $0.38 ($0.00, $0.95). Carbon accounting information can be found
here: https://breakend.github.io/ClimateChangeFromMachineLearningResearch/measuring_and_
mitigating_energy_and_carbon_footprints_in_machine_learning/ and https://breakend.github.
io/RL-Energy-Leaderboard/reinforcement_learning_energy_leaderboard/index.html. The social cost
of carbon uses models from ( , ). This statement and carbon emissions information was generated using
experiment-impact-tracker described in this paper.
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Energy and Policy
Considerations for
Deep Learning in NLP
(June 5, 2019)

We calculate total energy as:

etotal = PUE Z(pdmmedrmn + Pcpu€epu + nguegpu), (1)
p

where presource are the percentages of each system resource used by the attributable processes relative to the total in-use
resources and €.source 18 the energy usage of that resource. This is the per-process equivalent of the method which

( ) use. We assume the same constant power usage effectiveness (PUE) as ( ). This
value compensates for excess energy from cooling or heating the data-center.
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7.7 Driver and Implementation Difficulties

The experiment-impact-tracker framework abstracts away many of the previously mentioned difficulties in estimating
carbon and energy impacts: it handles routing to appropriate tools for collecting information, aggregates information
across tools to handle carbon calculations, finds carbon intensity information automatically, and corrects for multiple
processes on one machine. Yet, a few other challenges may be hidden by using the framework which remain difficult to
circumvent.
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Figure 6: Carbon Intensity (gCO,,.,/kWh) of selected energy grid regions is shown from least carbon emissions (left) to
most carbon emissions (right). Red/unshaded boxes indicate carbon intensities of cloud provider regions. Blue/shaded
boxes indicate carbon intensities of various generation methods. Oil shale is the most carbon emitting method of energy
production in the Figure. Estonia is powered mainly by oil shale and thus is close to it in carbon intensity. Similarly,
Québec is mostly powered by hydroelectric methods and is close to it in carbon intensity. Cloud provider carbon
intensities are based on the regional energy grid in which they are located. Thus, us-west-1, located in California, has
the same carbon intensity as the state. See https://github.com/Breakend/experiment-impact-tracker/ for
data sources of regional information. Energy source information from ( )i

(2015).
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Figure 3: We run 50,000 rounds of inference on a single sampled image through pre-trained image classification models
and record kWh, experiment time, FPOs, and number of parameters (repeating 4 times on different random seeds).
References for models, code, and expanded experiment details can be found in Appendix D. We run a similar analysis
to ( ) and find (left) that FPOs are not strongly correlated with energy consumption (R? = 0.083,
Pearson (0.289) nor with time (R? = 0.005, Pearson —0.074) when measured across different architectures. However,
within an architecture (right) correlations are much stronger. Only considering different versions of VGG, FPOs are
strongly correlated with energy (R? = .999, Pearson 1.0) and time (R? = .998, Pearson .999). Comparing parameters
against energy yields similar results (see Appendix D for these results and plots against experiment runtime).
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Figure 5: We evaluate A2C, PPO, DQN, and A2C+VTraces on PongNoFrameskip-v4 (left) and BreakoutNoFrameskip-
v4 (right), two common evaluation environments included in OpenAl Gym. We train for only 5SM timesteps, less than
prior work, to encourage energy efficiency and evaluate for 25 episodes every 250k timesteps. We show the Average
Return across all evaluations throughout training (giving some measure of both ability and speed of convergence of an
algorithm) as compared to the total energy in kWh. Weighted rankings of Average Return per kWh place A2C+Vtrace
first on Pong and PPO first on Breakout. Using PPO versus DQN can yield significant energy savings, while retaining
performance on both environments (in the SM samples regime). See Appendix F for more details and results in terms of
asymptotic performance.
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Figure 1: Variation of the Average Carbon Intensity of Servers Worldwide, by Region. (Vertical bars
represent regions with a single available data point.)
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| essons Learned

#1 Diving deeper leads to insights, but you might get scooped in the meantime.



| essons Learned

#2 Getting scooped is stressful, but those deeper insights might be valuable by
themselves. Still worth publishing (or at least putting online).




| essons Learned

#3 Journal-length papers give you more room to share all the nitty gritty lessons
learned, but seems like not as many people actually read through the whole thing.




| essons Learned

#4 \Ve should be more pro-active about sharing lessons learned, hence this
workshop!



| essons Learned

#5 \We need to share more detalls as a community, either through appendices or
gth follow-ups. Simply not enough information for post-noc meta-

journal-ler

analyses.

N Our case, we couldr

down this year and a half long |o

't estimate emissions which is why we ended up

urney.



Thanks for listening!

f you want to chat with me about this or anything else,
feel free to reach out to me.



