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Reinforcement Learning Successes

Military Al vanquishes human fighter pilot in
F-16 simulation. How scared should we be?

Artificial intelligence can master difficult combat skills at warp speed, but the Pentagon’s futurists
must remain mindful of its limitations and risks.

All the more remarkable, Heron’s Al pilot was self-taught using deep
reinforcement learning, a method in which an Al runs a combat
simulation over and over again and is “rewarded” for rapidly
successful behaviors and “punished” for failure. Initially, the Al
agent is simply learning not to fly its aircraft into the ground. But
after 4 billion iterations, Heron seems to have mastered the art of
executing energy-efficient air combat maneuvers.

https://www.nbcnews.com/think/opinion/military-ai-vanquishes-human-fighter-pilot-f-16-simulation-now-ncna1238773
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< How do neural networks work? >

In its most basic form, a neural network has two layers: an input layer
and an output layer®). The output layer is the component of the neural
network that makes predictions'®!. In a feedforward network, information
flows through the network in the following way: patterns of information
are fed into the network via the input units, which trigger the layers of
hidden units, and these in turn arrive at the output units''). The network
learns by a feedback process called backpropagation, which involves
comparing the output a network produces with the output it was meant
to produce, and using the difference between them to modify the weights
of the connections between the units in the network, working from the
output units through the hidden units to the input units, going
backward!?''*!, Qver time, backpropagation causes the network to learn,
reducing the difference between actual and intended output to the point
where the two exactly coincide, so the network figures things out exactly
as it should?.

1. How neural networks work - A simple introduction (www.explainthatstuff.com) &
2. How neural networks work - A simple introduction (www.explainthatstuff.com) &
3. How Do Neural Networks Really Work? | Nick McCullum (nickmccullum.com) &
4. How Do Neural Networks Really Work? | Nick McCullum (nickmccullum.com) &

www.explainthatstuff.com

between the input and the output. A richer structure like
this is called a deep neural network (DNN), and it's
typically used for tackling much more complex
problems. In theory, a DNN can map any kind of input
to any kind of output, but the drawback is that it needs
considerably more training: it need to "see" millions or
billions of examples compared to perhaps the hundreds
or thousands that a simpler network might need. Deep
or "shallow," however it's structured and however we
choose to illustrate it on the page, it's worth reminding
ourselves, once again, that a neural network is not
actually a brain or anything brain like. Ultimately, it's a
bunch of clever math... a load of equations... an
algorithm, if you prefer. [4]

How does a neural network learn
things?

Information flows through a neural network in two ways.
When it's learning (being trained) or operating normally
(after being trained), patterns of information are fed into
the network via the input units, which trigger the layers
of hidden units, and these in turn arrive at the output
units. This common design is called a feedforward
network. Not all units "fire" all the time. Each unit
receives inputs from the units to its left, and the inputs
are multiplied by the weights of the connections they
travel along. Every unit adds up all the inputs it receives
in this way and (in the simplest type of network) if the
sum is more than a certain threshold value, the unit
"fires" and triggers the units it's connected to (those on
its right).

[Image: A man launches a red ball down a ten-pin
bowling alley toward skittles.]

Photo: Bowling: You learn how to do skillful things like

I =0

Reinforcement learning on 175B parameter models

https://openai.com/blog/webgpt/
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JAIG developing first-of-its-kind ‘integration layer’
for Al algorithms

"Soif you don't have an integration layer like that, then you have to go find all of the data sources yourself... This is something we don't have yet in
the department,” Lt. Gen. Michael Groen told Breaking Defense.

By JASPREET GILL onFebruary 09,2022 at 11:13 AM
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Where does RL fall into government or public policy deployments”?

‘ " What makes for a good RL and Public Policy |
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~ What makes for a good RL and Public Policy
» ‘ | problem? |
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Recall that RL maximizes future reward as part of a
Markov Decision Process.

1. Your environment changes over time.
2. You need to both explore and exploit.
3. You (maybe) need to plan ahead.”

* For the purposes of this talk, we will consider contextual bandits as in-scope as they
can be formulated as an RL problem with discount O.
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What are the difficult research challenges
encountered in RL for public policy?
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What are the difficult research challenges
encountered in RL for public policy?

Multi-objective decision-making

In enforcement, many agencies must both prioritize where to target enforcement to
maximize misreporting (reward) and they are required by law to give statistically valid
estimates of overall misreporting (estimation).

The Improper Payments Information Act of 2002 (IPIA)
Improper Payments Elimination and Recovery Act of 2010 (IPERA)
Improper Payments Elimination and Recovery Improvement Act of 2012 (IPERIA)
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A case study of unigue challenges:
Internal Revenue Service Audit Selection

The presenter is a detailed IRS employee working with the IRS under a student volunteer agreement. All data work for this project involving confidential taxpayer information was done
on IRS computers by IRS employees. At no time was confidential taxpayer data ever outside of the IRS computing environment. The views and opinions presented in this presentation
reflect those of the author and do not necessarily reflect the views or the official position of the Internal Revenue Service.
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A case study of unigue challenges:
Internal Revenue Service Audit Selection

Tax gap estimate (difference between paid and true owed taxes) is $441 billion per
year.

Some estimate that investment into information technology for identifying misreporting
could yield 10:1 returns on investment. See Sarin and Summers (2019).

Sources
https://www.irs.gov/newsroom/the-tax-gap
Sarin, Natasha, and Lawrence H. Summers. Shrinking the tax gap: approaches and revenue potential. No. w26475. National Bureau of Economic Research, 2019.
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A case study of unigue challenges:
Internal Revenue Service Audit Selection

Current Process (simplified)

National Research

Program Op Audit Selection
» Risk Model » Risk-selected
& other selection + Other Selection Mechanisms
Stratified Random Sample
~15k audits per year methods >>100k audits per year

v

Estimates to meet reporting
requirements.

* Note there are a numlber of other methods that go

into current Op Audit selection and tax gap estimation.
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A case study of unique challenges:
Internal Revenue Service Audit Selection

Output: Misreporting Estimate

Agent
action
A
SR \
- S.. | Environment

Action: Which tax returns to audit next
Batch Size: Variable, depends on audit
budget for a given year

State: Population of tax returns to select from
(Features: everything in a tax return)

reward
R,

Reward: Amount of adjustment to Eﬂ?ﬂﬂa@g

taxes owed after audit Behavioral adjustments (less likely to misreport if
Delay: Usually 1-9 year delay someone in network recently audited)

New evasion mechanisms
Covariate Dirift (structural changes to the economy)
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A case study of unique challenges:
Internal Revenue Service Audit Selection

Problem: Population estimation requires reward-sub-optimal exploration. Exacerbates
the explore-exploit trade-off problem.

Solution: Planning required to optimally re-use information to achieve robust population

[ |
estimates.
1.0+
0.10 Higher precision of Higher
e A population estimate Reward
reeay cuto
0.51 = 0.081 - >
A
Stratum 1 w 0.06
;’é{ (1)8 Stratum 2 5 '
' Stratum 3 S 0.041
0.5 o)
0.0 . L : ‘ . - 0.00 : , .
30 40 50 30 40 50 0 0.1 1
Returns o
(a) Risk distribution and parameterizations (b) Probability of sampling an individual
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A case study of unigue challenges:
Internal Revenue Service Audit Selection

We find some bias-variance-reward trade-off between estimation and reward
Mmaximization objectives.

Future research: reduce the impact of this trade-oft.
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Formalization is better than status quo in many cases. Can identify
blases/problems and can adjust in iterative fashion.
But not if evaluation is bad and gives false sense of security or If
there are dramatic failure modes.
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Famous example Is the use of 7 positive labels with leave-one-
out validation to train/evaluate a random forest for detecting
“couriers” as part of the SKYNET program at the NSA.

https://arstechnica.com/information-technology/2016/02/the-nsas-skynet-program-may-be-killing-thousands-of-innocent-people/
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Can we verlfy RL well enough to fee\ confident in
deployments’?

Safety fallbacks when not functioning

within acceptable parameters
|[Gramble & Gao, 2018]

Policy performance certificates
[Dann et al., 2018]
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Often not thought about in the
context of RL, but important for

real-world deployment.
[EEOC, https://www.eeoc.gov/newsroom/
eeoc-launches-initiative-artificial-intelligence-
and-algorithmic-fairness]
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Across distributions of data simulating

different populations/conditions

[Henderson & Islam et al., 2017; Bouthillier et al.,
2021; Agarwal et al., 2021]

Statistically well-powered evaluation
[Colas et al., 2018; Card et al., 2021}
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s the agent making rational decisions?

* Robust evaluation already a common requirement
across some, but not agencies/applications. See,

e.g., NIST Facial Recognition Test framework. 30
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Military AI vanquishes human fighter pilot in
F-16 simulation. How scared should we be?

Artificial intelligence can master difficult combat skills at warp speed, but the Pentagon’s futurists
must remain mindful of its limitations and risks.

All the more remarkable, Heron’s Al pilot was self-taught using deep
reinforcement learning, a method in which an Al runs a combat
simulation over and over again and is “rewarded” for rapidly
successful behaviors and “punished” for failure. Initially, the Al
agent is simply learning not to fly its aircraft into the ground. But
after 4 billion iterations, Heron seems to have mastered the art of
executing energy-efficient air combat maneuvers.

Need to think hard about some deployments where mistakes cost lives.



Thank you!
Feel free to reach out with questions and comments.

34



